Confronting Ambiguity in 6D Object Pose Estimation via Score-Based Diffusion on SE(3)
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Addressing pose ambiguity in 6D object pose estimation § Given an RGB image [ that displays the object of interest, our goal is to estimate the 6D object poses % Quantitative Results on SYMSOL [1] % Visualization

from a single RGB 1mages presents significant § X = (R, T) € SE(3). This can be interpreted as sampling poses from a pose distribution X ~ p(X | 1), which § o il ResNetSO as the backbome. We report
challenge, particularly due to object symmetries or § captures the inherent pose uncertainty. We model the distribution using score-based pose diffusion model. the average angular distances in degrees.

occlusions, as illustrated in Fig. 1. Although state-of-the- o , , , , SYMSOL (Spread in degrees 1)
art regression methods use a symmetry-aware loss, this % Score-Based Diffusion Model on Lie Group % Efficient Computation of the Stein Score Methods Ave | fet. | cube | icosa. | come | oL
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symmetry annotations. However, exhaustive grid search GNT 4 ' if & satisties the following condition:

1S required for training and sampling. In response, we X = XEXP(Z), z ~ N(0, o2 I), where z € 3¢(3) JI(Z) _ J;r (2), Jl_l (z) = J;T (z), and JZ(Z)Z — % Quantitative Results on SYMSOL-T Figure 6. Visualization of Implicit-PDF [1] and our SE(3) models.

propose a novel score-based diffusion models operating B The score of the perturbation kernel: . 3 L. o ™
. . . The Stein score on SO(3) and R>SO(3) can be simolified § Table 2. We developed SYMSOL-T based on SYMSOL by adding
on SE(3), which overcomes aforementioned problem. ( ) ( ) p random translations. We use ResNet34 as the backbone, and report the
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ambiguity. (a) Unambiguous, (b): distribution on SO(3). () To address this problem, we observe .
self-occlusion, and (¢) occlusion. : | = W\ s\ that the denoising direction is the - Table 3. We use ResNet34 as the backbone. We report the three

Denoising process (geodesic random walk):

~
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Figure 4. Visualization of (a) Gaussian kernel on SO(2), (b) geodesic random
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Table 4. We assess inference time across different denoising steps
% The Proposed Framework (step skipping) on the T-LESS dataset.
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Figure 5. Framework overview.




