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Abstract
Addressing pose ambiguity in 6D object pose estimation 
from a single RGB images presents significant 
challenge, particularly due to object symmetries or 
occlusions, as illustrated in Fig. 1. Although state-of-the-
art regression methods use a symmetry-aware loss, this 
approach requires symmetry annotations obtained 
through extensive  manual labor and time. In contrast, 
non-parametric methods model the pose uncertainty as a 
distribution across , eliminating the need for 
symmetry annotations. However, exhaustive grid search 
is required for training and sampling. In response, we 
propose a novel score-based diffusion models operating 
on , which overcomes aforementioned problem. 
As depicted in Fig. 3, the pose is gradually refined from 
an initial guess throughout the denoising process.
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Figure 3. Visualization of the denoising process of our score-based diffusion 
model on  for 6D object pose estimation.SE(3)

A Lie group  and its associate Lie algebra  are related 
through mappings: . This 
work considers two groups  and , each 
with a different parametrization and composition rule:

𝒢 𝔤
Exp : 𝔤 → 𝒢, Log : 𝒢 → 𝔤

R3SO(3) SE(3)

• : 
   Parametrization:  
   Composition rule: 

R3SO(3)
⟨ℝ3, SO(3)⟩

(R2, T2)(R1, T1) = (R2R1, T2 + T1)
• : 
   Parametrization:  
   Composition rule: 

SE(3)
(R, T ) = (Exp(ϕ), Jl(ϕ)ρ)

(R2, T2)(R1, T1) = (R2R1, T2 + R2T1)

Figure 2. Modeling pose ambiguity as a 
distribution on .SO(3)

Given an RGB image  that displays the object of interest, our goal is to estimate the 6D object poses 
. This can be interpreted as  sampling poses from a pose distribution , which 

captures the inherent pose uncertainty. We model the distribution using score-based pose diffusion model.

I
X = (R, T ) ∈ SE(3) X ∼ p(X | I)

The score can be simplified as: 

                     

if  satisfies the following condition: 
     

∇X̃ log pσ(X̃ |X) = −
1
σ2

z

𝒢
Jl(z) = J⊤

r (z), J−1
l (z) = J−⊤

r (z), and Jl(z)z = z
The Stein score on  and  can be simplified 
as they satisfy the condition. However,  does not 
possess this property as we can prove:

SO(3) R3SO(3)
SE(3)

fi(x, c) =
d−1

∑
j=0

Wij (Aj(c)cos(πxj) + Bj(c)sin(πxj))

Gaussian perturbation kernel in Lie group defined as: 
pΣ(Y |X ) := 𝒩𝒢(Y; X, Σ) ≜

1
ζ (Σ)

exp (−
1
2

Log(X−1Y )⊤Σ−1Log(X−1Y ))
Sampling  from   is achieved by: 

 , where 
X̃ 𝒩𝒢(X̃; X, σ)

X̃ = XExp(z), z ∼ 𝒩(0,σ2I) z ∈ 𝔰𝔢(3)
The score of the perturbation kernel: 

                ∇X̃ log pσ(X̃ |X) = −
1
σ2

J−⊤
r (z)z

Denoising Score Matching objective: 

   ℒ(θ; σ) ≜
1
2

𝔼pdata(X)𝔼X̃∼𝒩𝒢(X,Σ) [ sθ(X̃, σ) − ∇X̃ log pσ(X̃ |X)
2

2]
Denoising process (geodesic random walk): 

     (1)   X̃i+1 = X̃Exp(ϵisθ(X̃i, σi) + 2ϵizi), zi ∼ 𝒩(0,I)

s̃X(X̃, σ) ≜ −
1
σ2

z

Figure 5. Framework overview.

For the condition operation, we propose Fourier-based 
conditioning mechanism to capture the inherent periodic 
features of  space, defined as:SO(3)

Scale-based conditioning:     f(x, c) = A(c)x + B(c)

Table 1. The baselines utilize ResNet50 as the backbone. We report 
the average angular distances in degrees.

This inequality indicates the discrepancy between the 
score vector and the denoising direction, which impede 
the convergence of the reverse process.

J−⊤
r (z) = (J−1

l (−z))⊤ = [ J−1
l (ϕ) 0

Z(ρ, ϕ) J−1
l (ϕ)] ≠ J−1

l (z)

X X̃

z

∇X̃ log pσ(X̃ |X )∝ − z

To address this problem, we observe 
that the denoising direction is the 
continuous integral of score vectors 
along the path as presented in Fig. 4. 
Thus, we propose a surrogate Stein 
score for training on , defined as :SE(3)

Figure 5. Discrepancy 
between the score vector 
and the denoising direction.

We present our framework in Fig. 5. The conditioning 
module generates condition variable  from images and 
diffusion time steps, which is used to guide the denoising 
process. The denoising module estimate scores  
of a noisy pose  and iteratively refine it with Eq. (1).
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Table 2. We developed SYMSOL-T based on SYMSOL by adding 
random translations. We use ResNet34 as the backbone, and report the 
average angular distances in degrees for rotation  and the average 
distances for translation .

R
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Table 3. We use ResNet34 as the backbone. We report the three 
metrics from the BOP challenge [3], rotation errors within 2, 5, 10 
degrees, and translation errors within 0.02, 0.05, 0.1 unit.

Table 4. We assess inference time across different denoising steps 
(step skipping) on the T-LESS dataset.

Figure 6. Visualization of Implicit-PDF [1] and our  models.SE(3)

Figure 7. Visualization of our  score model on SYMSOL-T.SE(3)

Figure 8. Visualization of our  score model on T-LESS.SE(3)
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1. We presented a novel approach that applies diffusion 
models to the  for addressing the pose ambiguity issue.  

2. We developed the SYMSOL-T dataset, which enrich the 
SYMSOL dataset with randomly sampled translations. 

3. Our experiments confirmed the applicability of our  
score model in solving pose ambiguity, and demonstrated 
its efficacy in real-world application. 
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Figure 1. An illustration of pose 
ambiguity. (a) Unambiguous, (b) 
self-occlusion, and (c) occlusion.
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Figure 4. Visualization of (a) Gaussian kernel on , (b) geodesic random 
walk on  (Mellow projection), and (c) a denoising step from  to .
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