[Note] Quantum Computation and Quantum Information - Midterm exam

期中考詳解,原文書:

Quantum Computation and Quantum Information, Michael A. Nielsen & Isaac L. Chuang

  • 班平均:57.7
  • 標準差:13.9

Problam 1

Defien the following states

Calculate the following expressions and write out the answer in matrix notations.

(a) $\vert 0\rangle\langle y_-\vert$

(b) $\vert 1\rangle\langle+\vert y_+\rangle$

(c) $\vert y_+\rangle\otimes\vert +\rangle$

(d) $\langle 1\vert \otimes \langle -\vert$

(e) $(H\otimes X)(\vert 0\rangle\otimes \vert y_-\rangle)$

(f) $(\langle-\vert\otimes \langle1\vert)(H\otimes Z)(\vert 0\rangle\otimes\vert y_+\rangle)$

(a)

(b)

(c)

(d)

(e)

(f)

Problem 2

Calculate the outcome probabilities and corresponding post measurement states of the following measurement settings.

(a) The state $\vert +\rangle$ in computational basis

(b) The state $\frac{1}{\sqrt2}(\vert 0\rangle\otimes\vert +\rangle+\vert 1\rangle\otimes \vert -\rangle)$ in computational basis

(c) The state is $\vert +\rangle$, measurement $\{M_1, M_2\}$ with $M_1=\displaystyle\frac{1}{2}\left(\begin{matrix}1 & -i\\i & 1\end{matrix}\right)$, $M_2=I-M_1$

(a)

(b)

(c)

Problem 3

Let $\vert \psi\rangle = \frac{1}{\sqrt2}(\vert 0\rangle\otimes\vert 0\rangle+\vert 1\rangle\otimes\vert 1\rangle)$

(a) Calculate $\langle \psi\vert Z\otimes (X+Z)/\sqrt2\vert \psi\rangle$

(b) What are the eigenvalues of $(X+Z)/\sqrt2$ and $Z\otimes (X+Z)/\sqrt2$?

(c) Suppose Alice is holding the first part of $\vert \psi\rangle$ and Bob is holding the second part. If Alice measures $Z$ on her part and Bob measures $(X+Z)/\sqrt2$,what is the probabilities that their measurements have the same outcome?

(a)
Because $(X+Z)/\sqrt2 = H$

(b)

  • $(X+Z)/\sqrt2=H \Rightarrow \lambda=\pm 1$
  • $Z\otimes H \Rightarrow \lambda=\pm 1$

(c)
Outcome table ($\lambda$)

$Z\otimes I$$I\otimes (X+Z)/\sqrt2$$Z\otimes (X+Z)/\sqrt2$
$+1$$+1$$+1$
$+1$$-1$$-1$
$-1$$+1$$-1$
$-1$$-1$$+1$

Let $Pr(+)$ and $Pr(-)$ denotes Alice and Bob get the same outcome and different outcomes.

$\Rightarrow Pr(+)=\displaystyle\frac{1}{2}(1+\frac{1}{\sqrt2})$

Problem 4

Recall that the Bell basis consist of the following states on two qubits:

Consider the quantum state $\vert +\rangle \otimes \vert \beta_{00}\rangle$ on three qubits. Suppose Alice is holding the first two qubits of $\vert +\rangle\otimes \vert \beta_{00}\rangle$ and Bob is holding the third. If Alice measures her two qubits in the Bell basis, what are the probabilities of each measurement outcome and Bob’s post-measurement state corresponding to each measurement outcome?

Problem 5

Show that for any $E$ that is an Hermitian operator on single qubit:

Hence, for any Hermitian operator $E$, the statement holds.

Problem 6

Consider the following ensemble:

Calculate the following quantities.

(a) The corresponding density matrix $\rho$.

(b) The expectation value of $Z$ against $\rho$.

(c) The outcome probabilities and post measurement states of computational basis measurement.

(d) The evolved state $\rho’$ obtained after applying $H$ to $\rho$.

(a)

(b)

(c)

(d)

Problem 7

Calculate a purification of

The eigenvalue and eignevector of $\rho$

The ensemble of $\rho$ is:

Then, the purification is

Verify:

Hence, $\vert \psi\rangle$ is a purification of $\rho$.

Problem 8

Let $\vert \psi\rangle=\frac{1}{\sqrt2}(\vert0\rangle\vert+\rangle+\vert1\rangle\vert-\rangle)$ be a quantum state on two systems $A$ and $B$. Calculate the reduced density matrix of $\vert \psi\rangle$ on system $A$.

Problem 9

Find $k$ such that $n^3+2n^2+\log(n)$ is $\Theta(n^k)$.

Suppose $\exists~c_1, c_2$ such that $c_1 n^k\le n^3+2n^2+\log(n)\le c_2n^k,~\forall~n\ge n_0$.
Assume $k=3$, let

The two inequality hold for $c_1=1$, $n_0=1$. Let

The two inequality hold for $c_2=3$, $n_0=1$.

Hence, $n^3+2n^2+\log(n) = \Theta(n^k)$ if $k=3$.

Problem 10

In Simon’s problem, we are given an oracle function $f:\{0,1\}^n\to\{0,1\}^n$ promised that $f(x)=f(y)$ if and only if $x=y\oplus s$ for some $s\ne0^n$. The problem is finding $s$. The Simon’s algorithm generate strings $z_1,z_2,\dots,z_k$ by running the following sub-algorithm.

  1. Create uniform superposition in the first register, prepare $\vert0\rangle^n$ in the second register.
  2. apply the oracle
  3. measure the second register
  4. apply Hadamard gates on the first register
  5. measure the first register and output as $z_i$

Suppose we are running Simon’s algorithm with $n=3$ and $s=110$. Write down all possible output strings $z_i$.

  1. Apply $H^{\otimes n}$ on the first register:
  2. Apply oracle:
  3. Measure the second register:
  4. Apply $H^{\otimes n}$ on the first register:
  5. Measure the first register. Only the states with $(-1)^{x\cdot z} + (-1)^{(x\oplus s) \cdot z} \ne 0$ can be measured. Suppose $n=3$, $s=110$:
$x$$x\oplus s$Possible $z$
$000$$110$$000, 001, 110, 111$
$001$$111$$000, 001, 110, 111$
$010$$100$$000, 001, 110, 111$
$011$$101$$000, 001, 110, 111$

Since $(-1)^{(x\oplus s)\cdot z} = (-1)^{x\cdot z+s\cdot z}$, $z$ must satisfy $s\cdot z ~(\text{mod}~2)=0$.

The possible $z=000, 001, 110, 111$.

Problem 11

Calculate the eigenvalues of $aX+bY+cZ$, where $X,Y,Z$ are the Pauli matrices and $a,b,c$ are real nubmers.

Problem 12

Calculate the output state of the following circuit

  1. Apply $H$, $\vert 000\rangle \to \frac{1}{\sqrt2}(\vert 000\rangle+\vert 100\rangle)$.
  2. Apply controlled-not, $\frac{1}{\sqrt2}(\vert 000\rangle+\vert 100\rangle) \to \frac{1}{\sqrt2}(\vert 000\rangle+\vert 110\rangle)$.
  3. Apply controlled-not, $\frac{1}{\sqrt2}(\vert 000\rangle+\vert 100\rangle) \to \frac{1}{\sqrt2}(\vert 000\rangle+\vert 111\rangle)$.
想喝咖啡