期中考詳解,原文書:
Quantum Computation and Quantum Information, Michael A. Nielsen & Isaac L. Chuang
- 班平均:57.7
- 標準差:13.9
Problam 1
Defien the following states
Calculate the following expressions and write out the answer in matrix notations.
(a) $\vert 0\rangle\langle y_-\vert$
(b) $\vert 1\rangle\langle+\vert y_+\rangle$
(c) $\vert y_+\rangle\otimes\vert +\rangle$
(d) $\langle 1\vert \otimes \langle -\vert$
(e) $(H\otimes X)(\vert 0\rangle\otimes \vert y_-\rangle)$
(f) $(\langle-\vert\otimes \langle1\vert)(H\otimes Z)(\vert 0\rangle\otimes\vert y_+\rangle)$
(a)
(b)
(c)
(d)
(e)
(f)
Problem 2
Calculate the outcome probabilities and corresponding post measurement states of the following measurement settings.
(a) The state $\vert +\rangle$ in computational basis
(b) The state $\frac{1}{\sqrt2}(\vert 0\rangle\otimes\vert +\rangle+\vert 1\rangle\otimes \vert -\rangle)$ in computational basis
(c) The state is $\vert +\rangle$, measurement $\{M_1, M_2\}$ with $M_1=\displaystyle\frac{1}{2}\left(\begin{matrix}1 & -i\\i & 1\end{matrix}\right)$, $M_2=I-M_1$
(a)
(b)
(c)
Problem 3
Let $\vert \psi\rangle = \frac{1}{\sqrt2}(\vert 0\rangle\otimes\vert 0\rangle+\vert 1\rangle\otimes\vert 1\rangle)$
(a) Calculate $\langle \psi\vert Z\otimes (X+Z)/\sqrt2\vert \psi\rangle$
(b) What are the eigenvalues of $(X+Z)/\sqrt2$ and $Z\otimes (X+Z)/\sqrt2$?
(c) Suppose Alice is holding the first part of $\vert \psi\rangle$ and Bob is holding the second part. If Alice measures $Z$ on her part and Bob measures $(X+Z)/\sqrt2$,what is the probabilities that their measurements have the same outcome?
(a)
Because $(X+Z)/\sqrt2 = H$
(b)
- $(X+Z)/\sqrt2=H \Rightarrow \lambda=\pm 1$
- $Z\otimes H \Rightarrow \lambda=\pm 1$
(c)
Outcome table ($\lambda$)
$Z\otimes I$ | $I\otimes (X+Z)/\sqrt2$ | $Z\otimes (X+Z)/\sqrt2$ |
---|---|---|
$+1$ | $+1$ | $+1$ |
$+1$ | $-1$ | $-1$ |
$-1$ | $+1$ | $-1$ |
$-1$ | $-1$ | $+1$ |
Let $Pr(+)$ and $Pr(-)$ denotes Alice and Bob get the same outcome and different outcomes.
$\Rightarrow Pr(+)=\displaystyle\frac{1}{2}(1+\frac{1}{\sqrt2})$
Problem 4
Recall that the Bell basis consist of the following states on two qubits:
Consider the quantum state $\vert +\rangle \otimes \vert \beta_{00}\rangle$ on three qubits. Suppose Alice is holding the first two qubits of $\vert +\rangle\otimes \vert \beta_{00}\rangle$ and Bob is holding the third. If Alice measures her two qubits in the Bell basis, what are the probabilities of each measurement outcome and Bob’s post-measurement state corresponding to each measurement outcome?
Problem 5
Show that for any $E$ that is an Hermitian operator on single qubit:
Hence, for any Hermitian operator $E$, the statement holds.
Problem 6
Consider the following ensemble:
Calculate the following quantities.
(a) The corresponding density matrix $\rho$.
(b) The expectation value of $Z$ against $\rho$.
(c) The outcome probabilities and post measurement states of computational basis measurement.
(d) The evolved state $\rho’$ obtained after applying $H$ to $\rho$.
(a)
(b)
(c)
(d)
Problem 7
Calculate a purification of
The eigenvalue and eignevector of $\rho$
The ensemble of $\rho$ is:
Then, the purification is
Verify:
Hence, $\vert \psi\rangle$ is a purification of $\rho$.
Problem 8
Let $\vert \psi\rangle=\frac{1}{\sqrt2}(\vert0\rangle\vert+\rangle+\vert1\rangle\vert-\rangle)$ be a quantum state on two systems $A$ and $B$. Calculate the reduced density matrix of $\vert \psi\rangle$ on system $A$.
Problem 9
Find $k$ such that $n^3+2n^2+\log(n)$ is $\Theta(n^k)$.
Suppose $\exists~c_1, c_2$ such that $c_1 n^k\le n^3+2n^2+\log(n)\le c_2n^k,~\forall~n\ge n_0$.
Assume $k=3$, let
The two inequality hold for $c_1=1$, $n_0=1$. Let
The two inequality hold for $c_2=3$, $n_0=1$.
Hence, $n^3+2n^2+\log(n) = \Theta(n^k)$ if $k=3$.
Problem 10
In Simon’s problem, we are given an oracle function $f:\{0,1\}^n\to\{0,1\}^n$ promised that $f(x)=f(y)$ if and only if $x=y\oplus s$ for some $s\ne0^n$. The problem is finding $s$. The Simon’s algorithm generate strings $z_1,z_2,\dots,z_k$ by running the following sub-algorithm.
- Create uniform superposition in the first register, prepare $\vert0\rangle^n$ in the second register.
- apply the oracle
- measure the second register
- apply Hadamard gates on the first register
- measure the first register and output as $z_i$
Suppose we are running Simon’s algorithm with $n=3$ and $s=110$. Write down all possible output strings $z_i$.
- Apply $H^{\otimes n}$ on the first register:
- Apply oracle:
- Measure the second register:
- Apply $H^{\otimes n}$ on the first register:
- Measure the first register. Only the states with $(-1)^{x\cdot z} + (-1)^{(x\oplus s) \cdot z} \ne 0$ can be measured. Suppose $n=3$, $s=110$:
$x$ | $x\oplus s$ | Possible $z$ |
---|---|---|
$000$ | $110$ | $000, 001, 110, 111$ |
$001$ | $111$ | $000, 001, 110, 111$ |
$010$ | $100$ | $000, 001, 110, 111$ |
$011$ | $101$ | $000, 001, 110, 111$ |
Since $(-1)^{(x\oplus s)\cdot z} = (-1)^{x\cdot z+s\cdot z}$, $z$ must satisfy $s\cdot z ~(\text{mod}~2)=0$.
The possible $z=000, 001, 110, 111$.
Problem 11
Calculate the eigenvalues of $aX+bY+cZ$, where $X,Y,Z$ are the Pauli matrices and $a,b,c$ are real nubmers.
Problem 12
Calculate the output state of the following circuit
- Apply $H$, $\vert 000\rangle \to \frac{1}{\sqrt2}(\vert 000\rangle+\vert 100\rangle)$.
- Apply controlled-not, $\frac{1}{\sqrt2}(\vert 000\rangle+\vert 100\rangle) \to \frac{1}{\sqrt2}(\vert 000\rangle+\vert 110\rangle)$.
- Apply controlled-not, $\frac{1}{\sqrt2}(\vert 000\rangle+\vert 100\rangle) \to \frac{1}{\sqrt2}(\vert 000\rangle+\vert 111\rangle)$.